新闻中心
尼龙66的材料说明
2021-06-23

中文别名:锦纶66短纤维;尼龙-66;尼龙66树脂;聚酰胺-66;聚己二酰己二胺;锦纶-66。尼龙66疲劳强度和刚性较高,耐热性较好,摩擦系数低,耐磨性好,但吸湿性大,尺寸稳定性不够。

通常应用于中等载荷,使用温度<100-120度无润滑或少润滑条件下工作的耐磨受力传动零件。尼龙66为聚己二酰己二胺,工业简称PA66。常制成圆柱状粒料,作塑料用的聚酰胺分子量一般为1.5万~2万。各种聚酰胺的共同特点是耐燃,抗张强度高(达104千帕),耐磨,电绝缘性好。

熔点(Tm)

熔点即结晶熔解时的温度,对结晶性高分子尼龙-66,显示清晰的熔点,根据采用的测试方法,熔点在259~267℃的范围内波动。通常采用差热分析(DTA)法测出的尼龙-66的熔点为264℃。实际上,尼龙-66的熔点可以根据结晶的熔融热(ΔH)和熔融熵(ΔS)计算出来:

尼龙-66的ΔH为4390.3J/mol,ΔS为8.37J/kmol,Tm的理论值为259.3℃[ ]。

如果将体积膨胀系数显示极大值的温度当作熔点,则尼龙-66的熔点温度范围为246~263℃。接近理论熔解温度259℃。

玻璃化温度(Tg)

高分子的比容和比热容等温度特性值在某一温度可出现不规则的变化,这一温度就是玻璃化转变温度,是分子链的链段克服分子间力开始运动的温度。在这一温度附近,模量、振动频率、介电常数等也开始发生变化。

尼龙-66的玻璃化温度,与测试方法、试样中的水分含量、单体浓度、结晶度等因素有关。Wilhoit和Dole等从比热容的温度变化分析,认为尼龙-66的玻璃化温度为47℃[ ],而Rybnikar则在低温下测定了尼龙-66的比容,发现在尼龙-66在-65℃也有一个转变温度。

物理性能

比重:PA6 1.14克/立方厘米,PA66 1.15克/立方厘米,PA1010 1.05克/立方厘米

成型收缩率:PA6 0.8-2.5% ,PA66 1.5-2.2%

干燥条件:100-110℃/12小时

坚韧、耐磨、耐油、,耐水、抗酶菌、但吸水大

燃烧鉴别方法:火焰上端黄色,下端蓝色,燃烧后塑料熔滴落,起泡,离火后特殊的羊毛,指甲烧焦味和带芹菜味

尼龙6:弹性好,冲击强度,吸水较大

尼龙66:性能优于尼龙6,强度高,耐磨性好

尼龙610:与尼龙66相似,但吸水小,刚度低

尼龙1010:半透明,吸水小。耐寒性较好。适于制作一般机械零件、减磨耐磨零件、传动零件以及化工、电器、仪表等零件

特点

1.优良的力学性能。尼龙的机械强度高,韧性好。

2.自润性、耐摩擦性好。尼龙具有很好的自润性,摩擦系数小,从而,作为传动部件其使用寿命长。

3.弹性好,耐疲劳性好,可经得住数万次的双挠曲

4.耐腐蚀性能佳,不霉,不怕蛀,有耐碱的能力,但不耐酸和氧化剂

5.染色性能良好

6.相对密度小,仅为1.04-1.14,除聚烯烃纤维外,是纤维中最轻的

注塑参数

结晶构造

Bill认为,尼龙-66的晶形有α型和β型二种形态,在常温下为三斜晶形,在165℃以上为六方晶形。

Bunn等确定了尼龙-66α型的结晶构造,尼龙-66分子中的亚甲基呈锯齿状平面排列,酰胺基取反式平面结构,分子链被笔直地拉长。相邻的分子以氢键连成平面的片状。

表01-68 尼龙-66 稳定晶形的晶格常数

晶体 a b c(纤维轴) α β γ

α型结晶(三斜晶系) 4.9×10-4μm 5.4×10-4μm 17.2×10-4μm 48½° 77° 63½°

计算密度=1.24g/cm3

图01-44 尼龙-66的α晶型结构 图01-45尼龙-66分子中晶片排列模型

线条:链状分子;○:氧原子

尼龙-66的α晶型是一系列晶片沿链轴方向一个接一个的垒积,而β晶型则每隔一片相互上下偏移垒积。对未进行热处理的普通成型品,构成结晶的氢键平面片的重叠方式,是这种α晶型和β晶型的任意混合。

球晶

熔融状态的尼龙-66缓慢冷却时,在235~245℃急剧生成球晶。球晶不仅包含于结晶部分,也包含于非结晶部分,结晶度为20%~40%。

球晶有在径向上优先取向的正球晶及在切线方向上优先取向的负球晶[ ]。尼龙-66球晶通常为正球晶,但在250~265℃下加热熔融结晶时可以生成负球晶[ , ]。球晶生成速度和球晶大小,除显著地受冷却温度的影响之外,还受到熔融温度、分子量等因素的影响。

结晶度

一般认为,普通结晶形高分子,具有结晶区域和非结晶区域,结晶区域的比例便称为结晶度。在很大程度上,结晶度可以左右尼龙-66的物理、化学和机械性质。结晶度可以用X-射线、红外吸收光谱、熔融热、密度和体积膨胀率等求得,其中以密度法最为简单方便。

分子量

综合考虑尼龙-66的可应用性和可加工性,通常将其分子量调整为15000~30000(聚合度约150~300),若分子量太大,成型加工性能变差。已经开发了一系列方法测定聚酰胺的分子量,如粘度法(溶液粘度法和熔融粘度法)、末端基定量法(中和滴定法、比色法、电位滴定法、电导滴定法)、光散射法、渗透压法、熔融电导法等,其中溶液粘度法在实验室条件较为容易进行。

热分解和水解反应

与其它聚酰胺相比,尼龙-66最容易热降解和三维结构化。当尼龙-66发生热分解时,首先表现为主链开裂引起分子量、熔体粘度降低;进一步降解时,由三维结构化引起熔体粘度上升而最终变成凝胶,成为不溶不熔物。其机理尚未完全阐明,但相信主要原因是尼龙-66本质造成的,与己二酸残基容易形成环戊酮衍生物密切相关。

在惰性气体氛围中,尼龙-66可以在300℃保持短时间的稳定性,但时间长后(如290℃5小时)就可看出明显的分解,产生氨和二氧化碳等。在无氧的条件下,其分解产物为氰基(-CN)和乙烯基(-CH=CH2)。

在有氧和水等存在时,尼龙-66在200℃就显示出明显的分解倾向。在有氧存在时,加热还会引起分子链之间的交联.

尼龙-66对室温水和沸水是稳定的,但在高温尤其是在熔融状态下则会发生水解。另外,尼龙-66在碱性水溶液中也很稳定,即使在10%的NaOH溶液中于85℃处理16小时也观察不到明显的变化。但在酸性水溶液中容易发生水解。


塑道学苑通过不断创新,努力成为火安全材料领域一站式服务品牌领导者。速测100材料测试平台是塑道学苑践行为所有材料人群提供优质服务宗旨迈出的重要一步。咨询热线:0512-69153465。更多测试资讯请访问速测100材料测试官方网站:www.suce100.com


QQ : 1821993658

联系电话 : 0512-69153465

邮箱 : ms.he@suce100.com

地址 : 苏州工业园区仁爱路166号